Login / Signup

Extracting Lungs from CT Images via Deep Convolutional Neural Network Based Segmentation and Two-Pass Contour Refinement.

Caixia LiuMingyong Pang
Published in: Journal of digital imaging (2020)
Lung segmentation is a key step of thoracic computed tomography (CT) image processing, and it plays an important role in computer-aided pulmonary disease diagnostics. However, the presence of image noises, pathologies, vessels, individual anatomical varieties, and so on makes lung segmentation a complex task. In this paper, we present a fully automatic algorithm for segmenting lungs from thoracic CT images accurately. An input image is first spilt into a set of non-overlapping fixed-sized image patches, and a deep convolutional neural network model is constructed to extract initial lung regions by classifying image patches. Superpixel segmentation is then performed on the preprocessed thoracic CT image, and the lung contours are locally refined according to corresponding superpixel contours with our adjacent point statistics method. Segmented lung contours are further globally refined by an edge direction tracing technique for the inclusion of juxta-pleural lesions. Our algorithm is tested on a group of thoracic CT scans with interstitial lung diseases. Experiments show that our algorithm creates an average Dice similarity coefficient of 97.95% and Jaccard's similarity index of 94.48%, with 2.8% average over-segmentation rate and 3.3% under-segmentation rate compared with manually segmented results. Meanwhile, it shows better performance compared with several feature-based machine learning methods and current methods on lung segmentation.
Keyphrases