The Anthelmintic Drug Niclosamide Synergizes with Colistin and Reverses Colistin Resistance in Gram-Negative Bacilli.
Ronald DomalaonP Malaka De SilvaAyush KumarGeorge G ZhanelFrank SchweizerPublished in: Antimicrobial agents and chemotherapy (2019)
There is an urgent need for new therapies to overcome antimicrobial resistance especially in Gram-negative bacilli (GNB). Repurposing old U.S. Food and Drug Administration-approved drugs as complementary agents to existing antibiotics in a synergistic combination presents an attractive strategy. Here, we demonstrate that the anthelmintic drug niclosamide selectively synergized with the lipopeptide antibiotic colistin against colistin-susceptible but more importantly against colistin-resistant GNB, including clinical isolates that harbor the mcr-1 gene. Breakpoints for colistin susceptibility in resistant Gram-negative bacilli were reached in the presence of 1 μg/ml (3 μM) niclosamide. Reversal of colistin resistance was also observed in combinations of niclosamide and polymyxin B. Enhanced bacterial killing was evident for the combination, in comparison to colistin monotherapy, against resistant Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae Accumulating evidence in the literature, along with our results, strongly suggests the potential for the combination of niclosamide and colistin to treat colistin-resistant Gram-negative bacillary infections. Our finding is significant since colistin is an antibiotic of last resort for multidrug-resistant Gram-negative bacterial infections that are nonresponsive to conventional treatments. With the recent global dissemination of plasmid-encoded colistin resistance, the addition of niclosamide to colistin therapy may hold the key to overcome colistin resistance.