Login / Signup

Dynamic Interfacial Regulation by Photodeformable Azobenzene-Containing Liquid Crystal Polymer Micro/Nanostructures.

Chongyu ZhuYao LuJiahao SunYanlei Yu
Published in: Langmuir : the ACS journal of surfaces and colloids (2020)
Photoresponsive materials offer local, temporal, and remote control over their chemical or physical properties under external stimuli, giving new tools for interfacial regulation. Among all, photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs) have received increasing attention because they can be processed into various micro/nanostructures and have the potential to reversibly tune the interfacial properties through chemical and/or morphological variation by light, providing effective dynamic interface regulation. In this feature article, we highlight the milestones in the dynamic regulation of different interfacial properties through micro/nanostructures made of photodeformable azobenzene-containing liquid crystal polymers (azo-LCPs). We describe the preparation of different azo-LCP micro/nanostructures from the aspects of materials and processing techniques and reveal the importance of mesogen orientation toward dynamic interfacial regulation. By introducing our recently developed linear azo-LCP (azo-LLCP) with good mechanical and photoresponsive performances, we discuss the challenge and opportunity with respect to the dynamic light regulation of two- and three-dimensional (2D/3D) micro/nanostructures to tune their related interfacial properties. We have also given our expectation toward exploring photodeformable micro/nanostructures for advanced applications such as in microfluidics, biosensors, and nanotherapeutics.
Keyphrases
  • ionic liquid
  • molecular dynamics simulations
  • electron transfer
  • perovskite solar cells
  • mental health
  • physical activity
  • dna methylation