Enantioselective Synthesis of Azahelicenes through Organocatalyzed Multicomponent Reactions.
Wei LiuTianren QinWansen XieJinmiao ZhouZidan YeXiaoyu YangPublished in: Angewandte Chemie (International ed. in English) (2023)
We have developed an efficient modular asymmetric synthesis of azahelicenes through an organocatalyzed asymmetric multicomponent reaction from readily available polycyclic aromatic amines, aldehydes, and (di)enamides, by employing a central-to-helical chirality conversion strategy. A series of aza[5]- and aza[4]helicenes bearing various substituents were readily afforded through this one-pot sequential enantioselective Povarov reaction/oxidative aromatization process, with good yields and high enantioselectivities. The fruitful and diverse derivatizations of the chiral azahelicene products demonstrated the potential of this method, and a preliminary application of the azahelicene derivative as a chiral organocatalyst was showcased. The photophysical and chiroptical properties of these azahelicenes, particularly the acid/base-triggered switching of these properties, were also well studied, which may find potential applications in the development of novel organic optoelectronic materials.