Login / Signup

Sensitive Plasmonic Detection of miR-10b in Biological Samples Using Enzyme-Assisted Target Recycling and Developed LSPR Probe.

Jisun KiHyo Young LeeHye Young SonYong-Min HuhSeungjoo Haam
Published in: ACS applied materials & interfaces (2019)
A portable and nonlabeled plasmonic biosensor was advanced to enable the sensitive and selective detection of microRNA (miRNA) in a biological sample. miRNAs can act on several key cellular processes, including cell differentiation, cell cycle progression, and function as oncogenes. Detection of circulating miRNAs, especially in blood or urine samples, allows noninvasive and simple diagnosis of diseases. Herein, we report a localized surface plasmon resonance sensor (LSPR) based on an enzyme-assisted target recycling system and a developed LSPR probe for the detection of gastric cancer relevant miRNAs, miR-10b. The sensitivity of the sensor was improved by increasing the concentration of the signal-amplifying agent using the duplex-specific nuclease and by strongly binding the developed LSPR probe, tannic acid capping gold nanoparticles, to the DNA. Under optimal conditions, miR-10b detection could be realized in the range of 5 pM-10 nM with a detection limit of 2.45 pM. This integrated detection system represents an approach to sensitive detection of miRNAs and offers great applications in personalized medicine and monitoring of cancer.
Keyphrases
  • loop mediated isothermal amplification
  • label free
  • sensitive detection
  • gold nanoparticles
  • cell cycle
  • real time pcr
  • quantum dots
  • cell proliferation
  • binding protein