Login / Signup

Mapping co-regulatory interactions among ligand-binding sites in ryanodine receptor 1.

Venkata R ChirasaniKonstantin I PopovGerhard MeissnerNikolay V Dokholyan
Published in: Proteins (2021)
Ryanodine receptor 1 (RyR1) is an intracellular calcium ion (Ca2+ ) release channel required for skeletal muscle contraction. Although cryo-electron microscopy identified binding sites of three coactivators Ca2+ , ATP, and caffeine (CFF), the mechanism of co-regulation and synergy of these activators is unknown. Here, we report allosteric connections among the three ligand-binding sites and pore region in (i) Ca2+ bound-closed, (ii) ATP/CFF bound-closed, (iii) Ca2+ /ATP/CFF bound-closed, and (iv) Ca2+ /ATP/CFF bound-open RyR1 states. We identified two dominant networks of interactions that mediate communication between the Ca2+ -binding site and pore region in Ca2+ bound-closed state, which partially overlapped with the pore communications in ATP/CFF bound-closed RyR1 state. In Ca2+ /ATP/CFF bound-closed and -open RyR1 states, co-regulatory interactions were analogous to communications in the Ca2+ bound-closed and ATP/CFF bound-closed states. Both ATP- and CFF-binding sites mediate communication between the Ca2+ -binding site and the pore region in Ca2+ /ATP/CFF bound-open RyR1 structure. We conclude that Ca2+ , ATP, and CFF propagate their effects to the pore region through a network of overlapping interactions that mediate allosteric control and molecular synergy in channel regulation.
Keyphrases
  • protein kinase
  • skeletal muscle
  • high resolution
  • type diabetes
  • transcription factor
  • metabolic syndrome
  • insulin resistance