Login / Signup

Modulatory effect of methanandamide on gastric vagal afferent satiety signals depends on nutritional status.

Stewart ChristieRebecca O'RiellyHui LiMaria Nunez-SalcesGary A WittertAmanda J Page
Published in: The Journal of physiology (2020)
Gastric vagal afferents (GVAs) play a role in appetite regulation. The endocannabinoid anandamide (AEA) dose-dependently inhibits and excites tension-sensitive GVAs. However, it is also known that high fat diet (HFD) feeding alters GVA responses to stretch. The aim of this study was to determine the role of AEA in GVA signalling in lean and HFD-induced obese mice. Male C57BL/6 mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Protein and mRNA expression of components of the cannabinoid system was determined in individual GVA cell bodies and the gastric mucosa. An in vitro GVA preparation was used to assess the effect of methanandamide (mAEA) on tension-sensitive GVAs and the second messenger pathways involved. In individual GVA cell bodies, cannabinoid 1 (CB1) and ghrelin (GHSR) receptor mRNA was higher in HFD mice than SLD mice. Conversely, gastric mucosal AEA and ghrelin protein levels were lower in HFD mice than SLD mice. In SLD mice, mAEA exerted dose-dependent inhibitory and excitatory effects on tension-sensitive GVAs. Only an inhibitory effect of mAEA was observed in HFD mice. The excitatory effect of mAEA was dependent on CB1, transient receptor potential vanilloid 1 (TRPV1) and the protein kinase C. Conversely, the inhibitory effect was dependent on CB1, growth hormone secretagogue receptor, TRPV1 and the protein kinase A. Endocannabinoids, acting through CB1 and TRPV1, have a pivotal role in modulating GVA satiety signals depending on the second messenger pathway utilised. In HFD mice only an inhibitory effect was observed. These changes may contribute to the development and/or maintenance of obesity.
Keyphrases