Login / Signup

Vibronic Coupling Analysis of the Ligand-Centered Phosphorescence of Gas-Phase Gd(III) and Lu(III) 9-Oxophenalen-1-one Complexes.

Jiří ChmelaJean-François GreischMichael E HardingWim KlopperManfred M KappesDetlef Schooss
Published in: The journal of physical chemistry. A (2018)
The gas-phase laser-induced photoluminescence of cationic mononuclear gadolinium and lutetium complexes involving two 9-oxophenalen-1-one ligands is reported. Performing measurements at a temperature of 83 K enables us to resolve vibronic transitions. Via comparison to Franck-Condon computations, the main vibrational contributions to the ligand-centered phosphorescence are determined to involve rocking, wagging, and stretching of the 9-oxophenalen-1-one-lanthanoid coordination in the low-energy range, intraligand bending, and stretching in the medium- to high-energy range, rocking of the carbonyl and methine groups, and C-H stretching beyond. Whereas Franck-Condon calculations based on density-functional harmonic frequency computations reproduce the main features of the vibrationally resolved emission spectra, the absolute transition energies as determined by density functional theory are off by several thousand wavenumbers. This discrepancy is found to remain at higher computational levels. The relative energy of the Gd(III) and Lu(III) emission bands is only reproduced at the coupled-cluster singles and doubles level and beyond.
Keyphrases
  • density functional theory
  • molecular dynamics
  • room temperature
  • magnetic resonance imaging
  • magnetic resonance
  • peripheral blood
  • contrast enhanced
  • energy transfer