Login / Signup

Representational Similarity of Body Parts in Human Occipitotemporal Cortex.

Stefania BracciAlfonso CaramazzaMarius V Peelen
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2015)
Regions in human lateral and ventral occipitotemporal cortices (OTC) respond selectively to pictures of the human body and its parts. What are the organizational principles underlying body part responses in these regions? Here we used representational similarity analysis (RSA) of fMRI data to test multiple possible organizational principles: shape similarity, physical proximity, cortical homunculus proximity, and semantic similarity. Participants viewed pictures of whole persons, chairs, and eight body parts (hands, arms, legs, feet, chests, waists, upper faces, and lower faces). The similarity of multivoxel activity patterns for all body part pairs was established in whole person-selective OTC regions. The resulting neural similarity matrices were then compared with similarity matrices capturing the hypothesized organizational principles. Results showed that the semantic similarity model best captured the neural similarity of body parts in lateral and ventral OTC, which followed an organization in three clusters: (1) body parts used as action effectors (hands, feet, arms, and legs), (2) noneffector body parts (chests and waists), and (3) face parts (upper and lower faces). Whole-brain RSA revealed, in addition to OTC, regions in parietal and frontal cortex in which neural similarity was related to semantic similarity. In contrast, neural similarity in occipital cortex was best predicted by shape similarity models. We suggest that the semantic organization of body parts in high-level visual cortex relates to the different functions associated with the three body part clusters, reflecting the unique processing and connectivity demands associated with the different types of information (e.g., action, social) different body parts (e.g., limbs, faces) convey. Significance statement: While the organization of body part representations in motor and somatosensory cortices has been well characterized, the principles underlying body part representations in visual cortex have not yet been explored. In the present fMRI study we used multivoxel pattern analysis and representational similarity analysis to characterize the organization of body maps in human occipitotemporal cortex (OTC). Results indicate that visual and shape dimensions do not fully account for the organization of body part representations in OTC. Instead, the representational structure of body maps in OTC appears strongly related to functional-semantic properties of body parts. We suggest that this organization reflects the unique processing and connectivity demands associated with the different types of information different body parts convey.
Keyphrases
  • endothelial cells
  • healthcare
  • working memory
  • magnetic resonance imaging
  • spinal cord
  • magnetic resonance
  • single cell
  • brain injury
  • deep brain stimulation
  • physical activity
  • big data
  • deep learning