Login / Signup

Ischemia reperfusion injury induces pyroptosis and mediates injury in steatotic liver thorough Caspase 1 activation.

Vasantha L KolachalaChrissy LopezMing ShenDmitry ShayakhmetovNitika Arora Gupta
Published in: Apoptosis : an international journal on programmed cell death (2021)
A steatotic liver is increasingly vulnerable to ischemia reperfusion injury (IRI), and the underlying mechanisms are incompletely defined. Caspases are endo-proteases, which provide critical regulatory connections between cell death and inflammation. Caspase 1 is driven by inflammasomes which are key signaling platforms, that detect sterile stressors (DAMPs), releasing the highly pro-inflammatory cytokine interleukin IL-8 and IL-1β. To delineate the involvement of Caspase 1 and 11 in hepatocellular injury in steatotic liver undergoing IRI. Male C57BL6/Wild Type and Caspase 1Null, Caspase 11-/- and Caspase 1-/-/11-/- mice were fed a high fat diet (HFD) for 12 weeks. These mice were subjected to 40 min of ischemia followed by 2-24 h of reperfusion. Hepatocellular injury was assessed by histopathologic injury scoring, serum ALT and propidium iodide (PI) uptake, mRNA levels of Caspase 1, IL-1β by RT PCR, Caspase 1 activity assay and Caspase 1. Specific Caspase 1, inhibitor experiments were carried out. All groups gained similar body weight after a 12-week HFD. Cleaved Caspase 1 protein levels, Caspase 1 mRNA levels were significantly higher in steatotic liver undergoing IRI. Executor of pyroptosis cleaved GSDMD levels were higher in HFD fed mouse compared to lean. In addition, genetic deletion of Caspase 1, Casp1Null mouse expressing Caspase-11 and Caspase 1/11 double knock out demonstrated significant reduction in serum ALT (p < 0.01), Injury Score, (p < 0.0002) but not in Caspase 11 alone. Caspase 1 is the driver of hepatocellular injury in a steatotic liver undergoing IRI, inhibition of which leads to hepatoprotection, thus providing a therapeutic target for clinical use.
Keyphrases