A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in H9c2UT cells.
Cheon Ho ParkJu Hee LeeMi Young LeeJeong Hyun LeeByung Ho LeeKwang-Seok OhPublished in: Molecular and cellular biochemistry (2016)
Urotensin II (UII) is a neural hormone that induces cardiac hypertrophy and may be involved in the pathogenesis of cardiac remodeling and heart failure. Hypertrophy has been linked to histone deacetylase 5 (HDAC5) phosphorylation and nuclear factor κB (NF-κB) translocation, both of which are predominantly mediated by G protein-coupled receptor kinase 5 (GRK5). In the present study, we found that UII rapidly and strongly stimulated nuclear export of HDAC5 and nuclear import of NF-κB in H9c2 cells overexpressing the urotensin II receptor (H9c2UT). Hence, we hypothesized that GRK5 and its signaling pathway may play a role in UII-mediated cellular hypertrophy. H9c2UT cells were transduced with a GRK5 small hairpin RNA interference recombinant lentivirus, resulting in the down-regulation of GRK5. Under UII stimulation, reduced levels of GRK5 in H9c2UT cells led to suppression of UII-mediated HDAC5 phosphorylation and activation of the NF-κB signaling pathway. In contrast, UII-mediated activations of ERK1/2 and GSK3α/β were not affected by down-regulation of GRK5. In a cellular hypertrophy assay, down-regulation of GRK5 significantly suppressed UII-mediated hypertrophy of H9c2UT cells. Furthermore, UII-mediated cellular hypertrophy was inhibited by amlexanox, a selective GRK5 inhibitor, in H9c2UT cells and neonatal cardiomyocytes. Our results suggest that GRK5 may be involved in a UII-mediated hypertrophic response via activation of NF-κB and HDAC5 at least in part by ERK1/2 and GSK3α/β-independent pathways.
Keyphrases
- signaling pathway
- induced apoptosis
- pi k akt
- cell cycle arrest
- nuclear factor
- heart failure
- histone deacetylase
- oxidative stress
- endoplasmic reticulum stress
- epithelial mesenchymal transition
- cell proliferation
- cell death
- magnetic resonance
- computed tomography
- magnetic resonance imaging
- endothelial cells
- contrast enhanced