Peptide-PAINT Using a Transfected-Docker Enables Live- and Fixed-Cell Super-Resolution Imaging.
Barun Kumar MaityDuncan NallYongjae LeePaul R SelvinPublished in: Small methods (2023)
Point accumulation for imaging in nanoscale topography (PAINT) is a single-molecule technique for super-resolution microscopy, which uses exchangeable single stranded DNA oligos or peptide-pairs to create blinking phenomenon and achieves ≈5-25 nanometer resolution. Here, it is shown that by transfecting the protein-of-interest with a docker-coil, rather than by adding the docker externally-as is the norm when using DNA tethers or antibodies as dockers-similar localization can be achieved, ≈10 nm. However, using a transfected docker has several experimental advances and simplifications. Most importantly, it allows Peptide-PAINT to be applied to transfected live cells for imaging surface proteins in mammalian cells and neurons under physiological conditions. The enhanced resolution of Peptide-PAINT is also shown for organelles in fixed cells to unravel structural details including ≈40-nm and ≈60-nm axial repeats in vimentin filaments in the cytoplasm, and fiber shapes of sub-100-nm histone-rich regions in the nucleus.
Keyphrases
- single molecule
- atomic force microscopy
- high resolution
- photodynamic therapy
- induced apoptosis
- living cells
- cell cycle arrest
- dna methylation
- fluorescence imaging
- cell death
- binding protein
- circulating tumor
- small molecule
- bone marrow
- oxidative stress
- high throughput
- mesenchymal stem cells
- light emitting
- nucleic acid