Login / Signup

Combining rapid antigen testing and syndromic surveillance improves community-based COVID-19 detection in a low-income country.

Fergus J ChadwickJessica ClarkShayan ChowdhuryTasnuva ChowdhuryDavid J PascallYacob HaddouJoanna AndreckaMikolaj KundegorskiCraig WilkieEric BrumTahmina ShirinA S M AlamgirMahmudur RahmanAhmed Nawsher AlamFarzana KhanBen SwallowFrances S MairJanine B IllianCaroline L TrotterDavina L HillDirk HusmeierJason MatthiopoulosKatie HampsonAyesha Sania
Published in: Nature communications (2022)
Diagnostics for COVID-19 detection are limited in many settings. Syndromic surveillance is often the only means to identify cases but lacks specificity. Rapid antigen testing is inexpensive and easy-to-deploy but can lack sensitivity. We examine how combining these approaches can improve surveillance for guiding interventions in low-income communities in Dhaka, Bangladesh. Rapid-antigen-testing with PCR validation was performed on 1172 symptomatically-identified individuals in their homes. Statistical models were fitted to predict PCR-status using rapid-antigen-test results, syndromic data, and their combination. Under contrasting epidemiological scenarios, the models' predictive and classification performance was evaluated. Models combining rapid-antigen-testing and syndromic data yielded equal-to-better performance to rapid-antigen-test-only models across all scenarios with their best performance in the epidemic growth scenario. These results show that drawing on complementary strengths across rapid diagnostics, improves COVID-19 detection, and reduces false-positive and -negative diagnoses to match local requirements; improvements achievable without additional expense, or changes for patients or practitioners.
Keyphrases