Influence of Implant Scanbody Wear on the Accuracy of Digital Impression for Complete-Arch: A Randomized In Vitro Trial.
Lorenzo ArcuriFabrizio LioVeronica CampanaVincenzo MazzettiFrancesca Romana FedericiAlessandra NardiMassimo GalliPublished in: Materials (Basel, Switzerland) (2022)
The aim of this study was to evaluate the influence of implant scanbody (ISB) wear on the accuracy of digital impression for complete-arch. A polymethylmethacrylate (PMMA) edentulous mandibular model with four internal hexagonal interlocking conical connections was scanned with an extraoral optical scanner to achieve a reference file. Four cylindrical polyetheretherketone (PEEK) ISBs were scanned 30 times with IOS, and the test files were aligned to the reference file with a best-fit algorithm. For each analog linear (ΔX, ΔY and ΔZ-axis) and angular deviations (ΔANGLE) were assessed. Euclidean distance (ΔEUC) was calculated from the linear deviation, reporting a mean of 82 µm (SD 61) ranging from 8 to 347 µm. ΔANGLE error mean was 0.33° (SD 0.20), ranging from 0.02 to 0.92°. From a multivariate analysis, when ΔEUC was considered as a response variable, a significant influence of ISB wear by scan number in interaction to position for implant 3.6 was identified ( p < 0.0001); when ΔANGLE was considered as a response variable, a significant effect of position 3.6 was recorded (( p < 0.0001). The obtained results showed that the ISB wear negatively influenced the accuracy of IOS, suggesting that ISB base wear could be detrimental for the seating of ISBs on angulated implants.