Login / Signup

S-Decorated Porous Ti3 C2 MXene Combined with In Situ Forming Cu2 Se as Effective Shuttling Interrupter in Na-Se Batteries.

Chengxing LuAnran LiGuozheng LiYu YanMengyang ZhangQinglin YangWei ZhouLin Guo
Published in: Advanced materials (Deerfield Beach, Fla.) (2021)
Given natural abundance of Na and superior kinetics of Se, Na-Se batteries have attracted much attention but still face the problem of shuttling effect of soluble intermediates. The first-principle calculations reveal the S-decorated Ti3 C2 exhibits increased binding energy to sodium polyselenides, suggesting a better capture and restriction on intermediates. The obtained Se@S-decorated porous Ti3 C2 (Se@S-P-Ti3 C2 ) exhibits a high reversible capacity of 765 mAh g-1 at 0.1 A g-1 (calculated based on Se), ≈1.2, 1.3, and 1.7 times of Se@porous Ti3 C2 (Se@P-Ti3 C2 ), Se@Ti3 C2 , and Se, respectively. It gives considerable capacity of 664 mAh g-1 at 20 A g-1 and impressive cycling stability over 2300 cycles with an ultralow capacity decay of 0.003% per cycle. The excellent electrochemical performance can be ascribed to the S-modified porous Ti3 C2 , which provides effective immobilization toward polyselenides, makes full use of nanosized Se, and alleviates volume expansion during sodiation/desodiation. Additionally, in situ forming Cu2 Se can generate Cu nanoparticles through discharge process and then transform polyselenides into solid-phase Cu2 Se, further suppressing the shuttling effect. This work provides a practical strategy to immobilize and transform sodium polyselenides for high-capacity and long-life Na-Se batteries.
Keyphrases