Preparation and Characterization of Rutin-Encapsulated Polymeric Micelles and Studies of Synergism with Bioactive Benzoic Acids and Triazolofluoroquinolones as Anticancer Nanomedicines.
Razan IbrahimViolet KasabriSuhair SunoqrotDana ShalabiRema AlkhateebYusuf AlhiariPublished in: Asian Pacific journal of cancer prevention : APJCP (2023)
Rutin loading in micelles was achieved with a loading efficiency of 59.5 ± 2.9%. The particle size of the micelles was found to be 18 ± 2 nm. Though Rutin loaded nanomicelles were of minimal DPPH radical scavenging activity; they had nitrogen oxide (NO) radical scavenging activity in lipopolysaccharide-induced RAW264.7 macrophages with equipotency to indomethacin (IC50 values (µM) 73.03 vs. 60.88; p=0.057). Remarkably nano-micelle formulation of rutin was proved of significantly more potent antineoplastic bioactivity with submicro-nanomolar affinities in the 6 cancer cell lines vs. both free rutin's and cisplatin's (except A549 lung cancer cell line). Rrutin nanomicelles chemo-sensitized all selected 8 cotreatments with BA derivatives and TFQs and, thus reducing the dose used against breast cancer MCF7 cells to submicro-nanomolar affinities of greater potencies than cisplatin's. Except for Triazolo-4-anisidine cipro butyl acid in PANC1, 2-Amino-3,5-Di iodo BA in A375 and 4-Nitrophenol in A549 incubations; rutin loaded nanomicelles chemosensitized 7/8 cotreating selected benzoic acid (BAs) derivatives and TFQs and chemosensitized pancreatic PANC1, skin A375 and lung A549 cancer cell lines, thus reducing the dose to submicro-nanomolar affinities of greater potencies than cisplatin's. Rutin loaded nanomicelles chemosensitize 6/8 cotreating selected benzoic acid (BA) derivatives and TFQs (except for 2-Amino-5-Bromo Benzoic Acid and Triazolo-4-anisidine cipro butyl acid), thus reducing the dose used against resistant CACO2 colorectal cancer cells.