Login / Signup

Computational wrist analysis of functional restoration after scapholunate dissociation repair.

Jennifer S WayneE J Tremols
Published in: Medical & biological engineering & computing (2019)
The scapholunate ligament stabilizes the scaphoid and lunate of the proximal row in the wrist which allows for proper force transmission with the radius and ulna. Damage to this structure degenerates into arthritis and disability. Controversy exists over the best technique to restore function and reduce pain. A three-dimensional computational model of the wrist and hand was used to investigate the biomechanical effects of scapholunate ligament dissociation and its repair. The model replicated 3D bony anatomy, soft tissue structures, and muscle loading. The model predicted the increased instability caused by the injury, consistent with experimental and clinical evidence, and a return of more healthy kinematics with the repair. Changes to load transmission across the radiocarpal joints were noted with the injury, only some of which were mitigated by the repair. As better understanding of the biomechanics of the wrist joint is achieved, this model could prove to be an important tool to further investigate wrist mechanics and inform the effects of treatment options. Graphical abstract 3D computational model of all bones in the wrist/hand permitted simulation of five major motions-wrist flexion/extension, radial/ulnar deviation, and clenched fist. Shown are the array of tensile elements representing ligaments and capsule, as well as muscle force vectors for the desired motions. SL (scapholunate) separation (interval) predicted by the model for one motion compared well to an experimental study showing the instability induced by an injured (cut) SL ligament and returned stability by a clinical repair procedure, MBT (Modified Brunelli technique).
Keyphrases
  • rheumatoid arthritis
  • multiple sclerosis
  • chronic pain
  • oxidative stress
  • mass spectrometry
  • pain management