Login / Signup

Bimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)-Au(shell) over Au(core)-Pd(shell).

Gauravjyoti D KalitaPodma Pollov SarmahGolap KalitaPankaj Das
Published in: Nanoscale advances (2021)
A facile ligand-assisted approach of synthesizing bimetallic Au-Pd nanoparticles supported on silica with a tunable core@shell structure is presented. Maneuvering the addition sequence of metal salts, both Au core -Pd shell (Au@Pd-SiO 2 ) and Pd core -Au shell (Pd@Au-SiO 2 ) nanoparticles were synthesized. The structures and compositions of the core-shell materials were confirmed by probe-corrected HRTEM, TEM-EDX mapping, EDS line scanning, XPS, PXRD, BET, FE-SEM-EDX and ICP analysis. The synergistic potentials of the core-shell materials were evaluated for two important reactions viz. hydrogenation of nitroarenes to anilines and hydration of nitriles to amides. In fact, in both the reactions, the Au-Pd materials exhibited superior performance over monometallic Au or Pd counterparts. Notably, among the two bimetallic materials, the one with Pd core -Au shell structure displayed superior activity over the Au core -Pd shell structure which could be attributed to the higher stability and uniform Au-Pd bimetallic interfaces in the former compared to the latter. Apart from enhanced synergism, high chemoselectivity in hydrogenation, wide functional group tolerance, high recyclability, etc. are other advantages of our system. A kinetic study has also been performed for the nitrile hydration reaction which demonstrates first order kinetics. Evaluation of rate constants along with a brief investigation on the Hammett parameters has also been presented.
Keyphrases
  • sensitive detection
  • reduced graphene oxide
  • visible light
  • high resolution
  • drug delivery
  • ionic liquid
  • metal organic framework