This letter reports on the fabrication, simulation and characterization of conformal antireflective black-silicon (BSi) nanowires on a 3D silicon structure. The BSi nanostructures were formed on various facets of a 3D Si structure including sharp tips and sidewalls using a metal-assisted chemical (MAC) etching process. The conformal BSi design was simulated using FDTD Lumerical software. The antireflection capability was indicated by the quantified reduction in normalized intensity after image processing of diffraction patterns. An optical iris of 1.00-mm circular aperture with conformal BSi nanowires was fabricated and characterized to demonstrate the anti-reflectivity capability at two visible wavelengths of 532 and 633 nm. The iris showed a significant reduction in glare around its Airy disc, up to 3× smaller than the same one but without the BSi nanostructures.