Login / Signup

Micro-optical elements from optical-quality ZIF-62 hybrid glasses by hot imprinting.

Oksana SmirnovaRoman SajzewSarah Jasmin FinkelmeyerTeymur AsadovSayan ChattopadhyayTorsten WieduwiltAaron ReupertMartin PresseltAlexander KnebelLothar Wondraczek
Published in: Nature communications (2024)
Hybrid glasses derived from meltable metal-organic frameworks (MOFs) promise to combine the intriguing properties of MOFs with the universal processing ability of glasses. However, the shaping of hybrid glasses in their liquid state - in analogy to conventional glass processing - has been elusive thus far. Here, we present optical-quality glasses derived from the zeolitic imidazole framework ZIF-62 in the form of cm-scale objects. These allow for in-depth studies of optical transparency and refraction across the ultraviolet to near-infrared spectral range. Fundamental viscosity data are reported using a ball penetration technique, and subsequently employed to demonstrate the fabrication of micro-optical devices by thermal imprinting. Using 3D-printed fused silica templates, we show that concave as well as convex lens structures can be obtained at high precision by remelting the glass without trading-off on material quality. This enables multifunctional micro-optical devices combining the gas uptake and permeation ability of MOFs with the optical functionality of glass. As an example, we demonstrate the reversible change of optical refraction upon the incorporation of volatile guest molecules.
Keyphrases
  • high resolution
  • high speed
  • metal organic framework
  • drug delivery
  • computed tomography
  • big data
  • machine learning
  • mass spectrometry
  • artificial intelligence
  • room temperature
  • carbon dioxide
  • tissue engineering