Login / Signup

Probing the Mechanism of Antibody-Triggered Aggregation of Gold Nanoparticles.

Samuel OkyemOlatunde AwotundeTosin OgunlusiMcKenzie B RileyJeremy D Driskell
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
The unique physicochemical properties of gold nanoparticles (AuNPs) provide many opportunities to develop novel biomedical technologies. The surface chemistry of AuNPs can be engineered to perform a variety of functions, including targeted binding, cellular uptake, or stealthlike properties through the immobilization of biomolecules, such as proteins. It is well established that proteins can spontaneously adsorb onto AuNPs, to form a stable and functional bioconjugate; however, the protein-AuNP interaction may result in the formation of less desirable protein-AuNP aggregates. Therefore, it is imperative to investigate the protein-AuNP interaction and elucidate the mechanism by which protein triggers AuNP aggregation. Herein, we systematically investigated the interaction of immunoglobulin G (IgG) antibody with citrate-capped AuNPs as a function of solution pH. We found that the addition of antibody triggers the aggregation of AuNPs for pH < 7.5, whereas a monolayer of antibody adsorbs onto the AuNP to form a stable bioconjugate when the antibody is added to AuNPs at pH ≥ 7.5. Our data identifies electrostatic bridging between the antibody and the negatively charged AuNPs as the mechanism by which aggregation occurs and rules out protein unfolding and surface charge depletion as potential causes. Furthermore, we found that the electrostatic bridging of AuNPs is reversible within the first few hours of interaction, but the protein-AuNP interactions strengthen over 24 h, after which the protein-AuNP aggregate is irreversibly formed. From this data, we developed a straightforward approach to acrylate the basic residues on the antibody to prevent protein-induced aggregation of AuNP over a wide pH range. The results of this study provide additional insight into antibody-nanoparticle interactions and provide a pathway to control the interaction with the potential to enhance the conjugate function.
Keyphrases
  • gold nanoparticles
  • protein protein
  • amino acid
  • binding protein
  • gene expression
  • risk assessment
  • genome wide
  • mass spectrometry
  • climate change
  • human health
  • endothelial cells
  • deep learning
  • high speed
  • dna binding