Login / Signup

Base-Catalyzed Aryl-B(OH)2 Protodeboronation Revisited: From Concerted Proton Transfer to Liberation of a Transient Aryl Anion.

Paul A CoxMarc ReidAndrew G LeachAndrew D CampbellEdward J KingGuy C Lloyd Jones
Published in: Journal of the American Chemical Society (2017)
Pioneering studies by Kuivila, published more than 50 years ago, suggested ipso protonation of the boronate as the mechanism for base-catalyzed protodeboronation of arylboronic acids. However, the study was limited to UV spectrophotometric analysis under acidic conditions, and the aqueous association constants (Ka) were estimated. By means of NMR, stopped-flow IR, and quenched-flow techniques, the kinetics of base-catalyzed protodeboronation of 30 different arylboronic acids has now been determined at pH > 13 in aqueous dioxane at 70 °C. Included in the study are all 20 isomers of C6HnF(5-n)B(OH)2 with half-lives spanning 9 orders of magnitude: <3 ms to 6.5 months. In combination with pH-rate profiles, pKa and ΔS⧧ values, kinetic isotope effects (2H, 10B, 13C), linear free-energy relationships, and density functional theory calculations, we have identified a mechanistic regime involving unimolecular heterolysis of the boronate competing with concerted ipso protonation/C-B cleavage. The relative Lewis acidities of arylboronic acids do not correlate with their protodeboronation rates, especially when ortho substituents are present. Notably, 3,5-dinitrophenylboronic acid is orders of magnitude more stable than tetra- and pentafluorophenylboronic acids but has a similar pKa.
Keyphrases
  • density functional theory
  • ionic liquid
  • room temperature
  • molecular dynamics
  • magnetic resonance
  • mass spectrometry
  • ms ms
  • simultaneous determination
  • case control
  • solid phase extraction