Modification of acidic and textural properties of a sulphated zirconia catalyst for efficient conversion of high-density polyethylene into liquid fuel.
Muhammad N AlmustaphaMuhammad FarooqMisbahu L MohammedMuhammad FarhanMuhammad ImranJohn M AndresenPublished in: Environmental science and pollution research international (2019)
Consumption of plastic has a rapid increase of about 8% per annum and reached to 400 million per tonnes approximately, where about 50% of plastic was disposed after using only once. Different techniques for treating this increased waste faced a number of issues related to cost and environmental and sustainable development. Catalytic conversion has been found as one of the most viable solutions to solve this problem. Sulphated zirconia (SZ) catalyst modified with calcium carbide (CC) was found to improve high-density polyethylene (HDPE) conversion into liquid fuel. The liquid content was improved from 39.0wt% to 66.0wt% at 410 °C. HDPE was converted 100% by weight using, SZ/CC with 66wt% liquid yield as compared to the conversion of approximately 98wt% with about 40wt% only liquid yield for the pure SZ. The composition of hydrocarbon liquid product was significantly changed from paraffin (16%) and aromatic (58%) to olefin (74%) and naphthenic (23%) compounds. This significant increase in liquid was related to changes in the acidic and textural characteristics of the new hybrid catalyst, SZ/CC where the total ammonia desorption of 337.0 μm NH3/g for the SZ was modified to 23.4 μm NH3/g for the SZ/CC. Both SZ and SZ/CC catalysts showed characteristics of mesoporous material, where the internal pore volume of SZ had reduced from 0.21 mL/g for SZ to 0.04 mL/g for SZ/CC. Furthermore, XRD analysis indicated the presence of a new compound, CaZrO3 in the SZ/CC, which confirmed a chemical interaction between the SZ and CC through sintering of ZrO2 and CaO. Therefore, the SZ/CC catalyst improves the liquid yield significantly and the selectivity towards olefinic and naphthenic compounds.