Separation and purification of lanosterol, dihydrolanosterol, and cholesterol from lanolin by high-performance counter-current chromatography dual-mode elution method.
Hairun PeiXiaotong MaYan PanTian HanZhifang LuRuijuan WuXueli CaoJimin ZhengPublished in: Journal of separation science (2019)
Lanosterol is a potential drug for cataracts treatment, which can reverse the aggregation of intracrystalline proteins. The low concentration in lanolin calls for high-performance separation methods. In this study, a counter-current chromatography dual-mode elution method was developed for the first time to separate and purify lanosterol from hexane extract of lanolin after saponification, in which the column was first eluted with the lower phase as mobile phase in head-to-tail mode, followed by the upper phase in the tail-to-head mode. High purity of lanosterol, dihydrolanosterol, and cholesterol can be obtained simultaneously. A solvent system composed of n-heptane/acetonitrile/ethyl acetate (5:5:1, v/v/v) was selected and optimized via partition coefficient determination. Compounds such as 111 mg lanosterol, 84 mg dihydrolanosterol, and 183 mg cholesterol with high purity of 99.77, 95.71, and 91.43%, respectively, analyzed by high-performance liquid chromatography were obtained within 80 min from 700 mg crude extract from 1.78 g lanolin. The method was also used to improve the purity of commercial lanosterol product from 66.97 to above 99%. Counter-current chromatography could serve as a potential and powerful technique for commercial production of highly pure lanosterol.
Keyphrases
- high performance liquid chromatography
- liquid chromatography
- tandem mass spectrometry
- mass spectrometry
- solid phase extraction
- simultaneous determination
- high speed
- low density lipoprotein
- oxidative stress
- ionic liquid
- emergency department
- magnetic resonance imaging
- molecularly imprinted
- high resolution
- anti inflammatory
- computed tomography
- optic nerve
- contrast enhanced