Downregulation of C-Terminal Tensin-Like Protein (CTEN) Suppresses Prostate Cell Proliferation and Contributes to Acinar Morphogenesis.
Wei-Ming WuYi-Chun LiaoPublished in: International journal of molecular sciences (2018)
C-terminal tensin-like protein (CTEN) is a member of tensin family, which is crucial for the assembly of cell-matrix adhesome. Unlike other tensins, CTEN is selectively expressed only in a few tissues such as the prostate. However, the biological relevance of CTEN in normal prostate is poorly understood. In this study, we revealed that CTEN is selectively expressed in the prostate epithelial cells and enriched in the basal compartment. Knockdown of CTEN in RWPE-1 cells suppresses cell proliferation and results in G1/S cell cycle arrest as well as the accumulation of cyclin-dependent kinase (CDK) inhibitors, p21 and p27. Moreover, the expression of CTEN is decreased during acinar morphogenesis using Matrigel-based three-dimensional (3D) culture. In the course of acinar formation, induction of CTEN reactivates focal adhesion kinase (FAK) Y397 phosphorylation and disrupts the acini structure. This study, to our knowledge, is the first report demonstrating that downregulation of CTEN is required for luminal differentiation and acinar formation.