Login / Signup

Distinguishing between ante factum and post factum properties of animal cell lines and demonstrating their use in grouping ray-finned fish cell lines into invitromes.

Niels C BolsLucy E J LeeGeorgina C Dowd
Published in: In vitro cellular & developmental biology. Animal (2023)
In this review, animal cell lines are considered to have two classes of attributes: "before-the-fact" (ante factum) and "after-the-fact" (post factum) properties. Fish cell lines from Actinopterygii (ray-finned fishes) are used to illustrate this distinction and to demonstrate how these properties can be used in various ways to categorize cell lines into groups or invitromes. Before-the-fact properties are set at initiation and are properties of the sample and species from which the cell line arose and of the scientist(s) who developed the cell line. On the basis of the Actinopterygii sample, invitromes exist for embryos, larvae, juveniles, adults, and spawning fish, and for most solid organs but rarely for biological fluids. For species, invitromes exist for only a small fraction of the Actinopterygii total. As to their development, scientists from around the world have contributed to invitromes. By contrast, after-the-fact properties are limitless and become apparent during development, characterization, use, and storage of the cell line. For ray-finned invitromes, cell lines appear to acquire immortality during development, are characterized poorly for differentiation potential, have numerous uses, and are stored formally only sporadically. As an example of applying these principles to a specific organ, the skeletal muscle invitrome is used. For ante factum properties, the cell lines are mainly from trunk muscle of economically important fish from 11 orders, 15 families, 19 genera, and 21 species of ray-finned fishes. For post factum properties, fibroblast-like and myogenic cell lines have been described but epithelial-like FHM is most widely used and curated. Considering cell lines by their before- and after-the-fact properties should facilitate integration of new cell lines into the literature and help incorporate the discipline of cell biology into other research areas, particularly the natural history of fishes.
Keyphrases
  • skeletal muscle
  • systematic review
  • metabolic syndrome
  • computed tomography
  • single cell
  • risk assessment
  • bone marrow
  • cell therapy
  • zika virus