Cation Defect Mediated Phase Transition in Potassium Tungsten Bronze.
Pei LiRenhui JiangLigong ZhaoHuayu PengPeili ZhaoShuangfeng JiaHe ZhengJianbo WangPublished in: Inorganic chemistry (2021)
Applying in situ transmission electron microscopy, the phase instability in potassium tungsten bronze (KxWO3, 0.18 < x < 0.57) induced by heating was investigated. The atomistic phase transition pathway of monoclinic K0.20WO3 → hexagonal KmWO3 (0.18 < m < 0.20) → cubic WO3 induced by cationic defects (K and W vacancies) was directly revealed. Unexpectedly, a K+-rich tetragonal KnWO3 (0.40 < n < 0.57) phase would nucleate as well, which may result from the blockage of K+ diffusion at the grain boundaries. Our results point out the critical role of the cationic defects in mediating the crystal structures in KxWO3, which provide reference to rational structural design for extensive high-temperature applications.