Comparison of Treatment Effects of Different Iron Chelators in Experimental Models of Sepsis.
Christian LehmannMaral AaliJuan ZhouBruce HolbeinPublished in: Life (Basel, Switzerland) (2021)
Growing evidence indicates that dysregulated iron metabolism with altered and excess iron availability in some body compartments plays a significant role in the course of infection and sepsis in humans. Given that all bacterial pathogens require iron for growth, that iron withdrawal is a normal component of innate host defenses and that bacterial pathogens have acquired increasing levels of antibiotic resistance, targeting infection and sepsis through use of appropriate iron chelators has potential to provide new therapeutics. We have directly compared the effects of three Food and Drug Administration (FDA)-approved chelators (deferoxamine-DFO; deferiprone-DFP; and deferasirox-DFX), as were developed for treating hematological iron overload conditions, to DIBI, a novel purpose-designed, anti-infective and anti-inflammatory water-soluble hydroxypyridinone containing iron-selective copolymers. Two murine sepsis models, endotoxemia and polymicrobial abdominal sepsis, were utilized to help differentiate anti-inflammatory versus anti-infective activities of the chelators. Leukocyte adhesion, as measured by intravital microscopy, was observed in both models, with DIBI providing the most effective reduction and DFX the poorest. Inflammation in the abdominal sepsis model, assessed by cytokine measurements, indicated exacerbation by DFX and DFO for plasma Interleukin (IL)-6 and reductions to near-control levels for DIBI and DFP. Peritoneal infection burden was reduced 10-fold by DIBI while DFX and DFP provided no reductions. Overall, the results, together with those from other studies, revealed serious limitations for each of the three hematological chelators, i.e., as potentially repurposed for treating infection/sepsis. In contrast, DIBI provided therapeutic benefits, consistent with various in vitro and in vivo results from other studies, supporting the potential for its use in treating sepsis.
Keyphrases
- septic shock
- acute kidney injury
- intensive care unit
- iron deficiency
- anti inflammatory
- drug administration
- immune response
- oxidative stress
- risk assessment
- chronic obstructive pulmonary disease
- risk factors
- drug delivery
- magnetic resonance
- human health
- pseudomonas aeruginosa
- computed tomography
- staphylococcus aureus
- multidrug resistant
- optical coherence tomography
- cancer therapy
- replacement therapy
- single cell
- climate change