Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance.
Ashley A LloydBernd GludovatzChristoph RiedelEmma A LuengoRehan SaiyedEric MartyDean G LorichJoseph M LaneRobert O RitchieBjörn BusseE L DonnellyPublished in: Proceedings of the National Academy of Sciences of the United States of America (2017)
Bisphosphonates are the most widely prescribed pharmacologic treatment for osteoporosis and reduce fracture risk in postmenopausal women by up to 50%. However, in the past decade these drugs have been associated with atypical femoral fractures (AFFs), rare fractures with a transverse, brittle morphology. The unusual fracture morphology suggests that bisphosphonate treatment may impair toughening mechanisms in cortical bone. The objective of this study was to compare the compositional and mechanical properties of bone biopsies from bisphosphonate-treated patients with AFFs to those from patients with typical osteoporotic fractures with and without bisphosphonate treatment. Biopsies of proximal femoral cortical bone adjacent to the fracture site were obtained from postmenopausal women during fracture repair surgery (fracture groups, n = 33) or total hip arthroplasty (nonfracture groups, n = 17). Patients were allocated to five groups based on fracture morphology and history of bisphosphonate treatment [+BIS Atypical: n = 12, BIS duration: 8.2 (3.0) y; +BIS Typical: n = 10, 7.7 (5.0) y; +BIS Nonfx: n = 5, 6.4 (3.5) y; -BIS Typical: n = 11; -BIS Nonfx: n = 12]. Vibrational spectroscopy and nanoindentation showed that tissue from bisphosphonate-treated women with atypical fractures was harder and more mineralized than that from bisphosphonate-treated women with typical osteoporotic fractures. In addition, fracture mechanics measurements showed that tissue from patients treated with bisphosphonates had deficits in fracture toughness, with lower crack-initiation toughness and less crack deflection at osteonal boundaries than that of bisphosphonate-naïve patients. Together, these results suggest a deficit in intrinsic and extrinsic toughening mechanisms, which contribute to AFFs in patients treated with long-term bisphosphonates.
Keyphrases
- postmenopausal women
- bone mineral density
- hip fracture
- ionic liquid
- end stage renal disease
- newly diagnosed
- ejection fraction
- body composition
- minimally invasive
- traumatic brain injury
- total hip arthroplasty
- peritoneal dialysis
- stem cells
- mass spectrometry
- bone marrow
- atrial fibrillation
- mesenchymal stem cells
- soft tissue
- coronary artery bypass
- patient reported
- smoking cessation