Login / Signup

Functional connectivity alterations associated with literacy difficulties in early readers.

Roger Mateu EstivillSusanna FornéAnna López-SalaJuan Domingo GispertXavier CaldúJosep M SopenaAnna SansAna AdanSergi Grau-CarrionNuria BargalloJosep M Serra-Grabulosa
Published in: Brain imaging and behavior (2020)
The link between literacy difficulties and brain alterations has been described in depth. Resting-state fMRI (rs-fMRI) has been successfully applied to the study of intrinsic functional connectivity (iFc) both in dyslexia and typically developing children. Most related studies have focused on the stages from late childhood into adulthood using a seed to voxel approach. Our study analyzes iFc in an early childhood sample using the multivariate pattern analysis. This facilitates a hypothesis-free analysis and the possible identification of abnormal functional connectivity patterns at a whole brain level. Thirty-four children with literacy difficulties (LD) (7.1 ± 0.69 yr.) and 30 typically developing children (TD) (7.43 ± 0.52 yr.) were selected. Functional brain connectivity was measured using an rs-fMRI acquisition. The LD group showed a higher iFc between the right middle frontal gyrus (rMFG) and the default mode network (DMN) regions, and a lower iFc between the rMFG and both the bilateral insular cortex and the supramarginal gyrus. These results are interpreted as a DMN on/off routine malfunction in the LD group, which suggests an alteration of the task control network regulating DMN activity. In the LD group, the posterior cingulate cortex also showed a lower iFc with both the middle temporal poles and the fusiform gyrus. This could be interpreted as a failure in the integration of information between brain regions that facilitate reading. Our results show that children with literacy difficulties have an altered functional connectivity in their reading and attentional networks at the beginning of the literacy acquisition. Future studies should evaluate whether or not these alterations could indicate a risk of developing dyslexia.
Keyphrases
  • resting state
  • functional connectivity
  • health information
  • young adults
  • working memory
  • healthcare
  • social media
  • optical coherence tomography
  • early life
  • subarachnoid hemorrhage
  • childhood cancer