Selective inhibitors of nuclear export (SINE) are emerging as a potentially efficacious therapeutic strategy for overcoming resistance to conventional chemotherapy for acute myeloid leukemia. SINE specifically block the protein Exportin 1, also known as chromosomal region maintenance 1, leading to nuclear retention of cargo proteins, including several tumor suppressor proteins. Selinexor, a first generation SINE, is currently in early phase clinical studies in various combinations with promising antileukemic and pro-apoptotic activity. Here we discuss the mechanism of action of SINEs and further elaborate on the clinical data available from the various trials in acute myeloid leukemia.