Login / Signup

Neutrophil Elastase Triggers the Release of Macrophage Extracellular Traps: Relevance to CF.

Apparao B KummarapuruguShuo ZhengJonathan MaShobha GhoshAdam HawkridgeJudith A Voynow
Published in: American journal of respiratory cell and molecular biology (2021)
Neutrophil extracellular traps increase cystic fibrosis (CF) airway inflammation. We hypothesized that macrophage exposure to neutrophil elastase (NE) would trigger the release of macrophage extracellular traps (METs), a novel mechanism to augment NE-induced airway inflammation in CF. To test whether human blood monocyte derived macrophages (hBMDM) from CF and non-CF subjects take up proteolytically active NE resulting in clipping of chromatin binding proteins and the release of METs. Human BMDM from CF and non-CF subjects were treated with FITC-NE to determine NE localization. Intracellular NE activity was determined by DQ-elastin assay. MET DNA release was detected by Pico-green for hBMDM, and visualized by confocal microscopy for hBMDM, and for alveolar macrophages harvested from intratracheal NE-exposed Cftr-null and wild-type littermate mice. Immunofluorescence assays for histone citrullination and western analyses for histone clipping were performed. FITC-NE was localized to cytoplasmic and nuclear domains, and NE retained proteolytic activity in hBMDM. NE (100 to 500 nM) significantly increased extracellular DNA release from hBMDM. NE activated MET release by confocal microscopy in hBMDM, and in alveolar macrophages from Cftr-null and Cftr wild-type mice. NE-triggered MET release was associated with H3 citrullination and partial cleavage of Histone H3 but not H4. Exposure to NE caused release of METs from both CF and non-CF hBMDM in vitro and murine alveolar macrophages in vivo. MET release was associated with NE-activated H3 clipping, a mechanism associated with chromatin decondensation, a prerequisite for METs.
Keyphrases