Login / Signup

Self-Sorted, Random, and Block Supramolecular Copolymers via Sequence Controlled, Multicomponent Self-Assembly.

Aritra SarkarRanjan SasmalCharly Empereur-MotDavide BochicchioSrinath V K KompellaKamna SharmaShikha DhimanBalasubramanian SundaramSarit S AgastiGiovanni M PavanSubi J George
Published in: Journal of the American Chemical Society (2020)
Multicomponent supramolecular copolymerization promises to construct complex nanostructures with emergent properties. However, even with two monomeric components, various possible outcomes such as self-sorted supramolecular homopolymers, a random (statistical) supramolecular copolymer, an alternate supramolecular copolymer, or a complex supramolecular block copolymer can occur, determined by their intermolecular interactions and monomer exchange dynamics and hence structural prediction is extremely challenging. Herein, we target this challenge and demonstrate unprecedented two-component sequence controlled supramolecular copolymerization by manipulating thermodynamic and kinetic routes in the pathway complexity of self-assembly of the constitutive monomers. Extensive molecular dynamics simulations provided useful mechanistic insights into the monomer exchange rates and free energy of interactions between the monomers that dictate the self-assembly pathway and sequence. The fluorescent nature of core-substituted naphthalene diimide monomers has been further utilized to characterize the three sequences via Structured Illumination Microscopy (SIM).
Keyphrases
  • energy transfer
  • water soluble
  • molecular dynamics simulations
  • molecular docking
  • quantum dots
  • high resolution
  • molecularly imprinted
  • metabolic syndrome
  • high throughput
  • high speed
  • living cells