2,4-Dihydroxycinnamic acid as spike ACE2 inhibitor and apigenin as RdRp inhibitor in Nimbamritadi Panchatiktam Kashayam against COVID-19: an in silico and in vitro approach.
Maneesha MuraliBhagyalakshmi NairV R VishnuT P AneeshLekshmi R NathPublished in: Molecular diversity (2022)
Nimbamritadi Panchatiktam Kashayam (NPK) is an ayurvedic formulation composed of ingredients with potent anti-viral activities. We studied the interaction energy of 144 phytoconstituents present in NPK against spike receptor-binding domain (RBD) complexed with ACE2 protein (PDB ID: 6LZG) and RNA-dependent RNA polymerase protein (PDB ID: 7BTF) using Biovia Drug Discovery studio. The result indicated that 2,4-hydroxycinnamic acid exerts more significant binding affinities (28.43 kcal/mol) than Umifenovir (21.24 kcal/mol) against spike ACE2. Apigenin exhibited the highest binding affinities (54.63 kcal/mol) compared with Remdesivir (24.52 kcal/mol) against RdRp. An in vitro analysis showed a reduction in the number of lentiviral particles on transfected HEK293T-hACE2 cells as assessed by pseudovirus inhibition assay. At the same time, the tested compounds showed non-toxic up to 100 µg/ml in normal cells by MTT assay. The study highlights the plausible clinical utility of this traditional medicine against SARS CoV2.
Keyphrases
- sars cov
- induced apoptosis
- drug discovery
- binding protein
- cell cycle arrest
- angiotensin converting enzyme
- angiotensin ii
- coronavirus disease
- high throughput
- respiratory syndrome coronavirus
- protein protein
- endoplasmic reticulum stress
- drug delivery
- signaling pathway
- cell proliferation
- molecular docking
- single cell
- gene therapy