Login / Signup

Deriving Superhydrophobicity Directly and Solely from Molecules: A Facile and Emerging Approach.

Manideepa DharAvijit DasUttam Manna
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Nature-inspired superhydrophobic surfaces have gained significant attention due to their various potential applications. Artificial superhydrophobic surfaces were fabricated through co-optimization of topography and low-surface-energy chemistry. In the conventional approach, artificial superhydrophobic surfaces are developed through associating mostly polymer, metal, alloys, nanoparticles, microparticles, etc. and commonly encounter several challenges related to scalability, durability, and complex fabrication processes. In response to these challenges, molecule-based approaches have emerged as a promising alternative, providing several advantages such as prolonged shelf life of depositing solution, higher solvent compatibility, and a simple fabrication process. In this Perspective, we have provided a concise overview of traditional and molecule-based approaches to fabricating superhydrophobic surfaces, highlighting recent advancements and challenges. We have discussed various molecule-based strategies for tailoring water wettability, customizing mechanical properties, developing substrate-independent coatings, prolonging the shelf life of deposition solutions, and so on. Here, we have illustrated the potential of molecule-based approaches in overcoming existing limitations and its importance to diverse and prospective practical applications.
Keyphrases