Login / Signup

Etch and Print: Graphene-Based Diodes for Silicon Technology.

Alessandro GrilloZixing PengAniello PelellaAntonio Di BartolomeoCinzia Casiraghi
Published in: ACS nano (2022)
The graphene-silicon junction is one of the simplest conceivable interfaces in graphene-integrated semiconductor technology that can lead to the development of future generation of electronic and optoelectronic devices. However, graphene's integration is currently expensive and time-consuming and shows several challenges in terms of large-scale device fabrication, effectively preventing the possibility of implementing this technology into industrial processes. Here, we show a simple and cost-effective fabrication technique, based on inkjet printing, for the realization of printed graphene-silicon rectifying devices. The printed graphene-silicon diodes show an ON/OFF ratio higher than 3 orders of magnitude and a significant photovoltaic effect, resulting in a fill factor of ∼40% and a photocurrent efficiency of ∼2%, making the devices suitable for both electronic and optoelectronic applications. Finally, we demonstrate large-area pixeled photodetectors and compatibility with back-end-of-line fabrication processes.
Keyphrases
  • room temperature
  • carbon nanotubes
  • walled carbon nanotubes
  • low cost
  • light emitting
  • current status