Login / Signup

Compartment-specific energy requirements of photosynthetic carbon metabolism in Camelina sativa leaves.

Thomas WielochThomas David Sharkey
Published in: Planta (2022)
accounts for 4.8% of total rubisco activity. Hence, 4.8% of the flux through the Calvin-Benson cycle and photorespiration is spent on supplying cytosolic NADPH, a significant investment. Associated energy requirements exceed the energy output of the OPPP. Thus, autotrophic carbon metabolism is not simply optimised for flux into carbon sinks but sacrifices carbon and energy use efficiency to support cytosolic energy metabolism. To reduce these costs, we suggest bioengineering plants with a repressed cytosolic OPPP, and an inserted cytosolic NADPH-dependent malate dehydrogenase tuned to compensate for the loss in OPPP activity (if required). Second, sucrose cycling is a minor investment in overall leaf energy metabolism but a significant investment in cytosolic energy metabolism. Third, leaf energy balancing strictly requires oxidative phosphorylation, cofactor export from chloroplasts, and peroxisomal NADH import. Fourth, mitochondria are energetically self-sufficient. Fifth, carbon metabolism has an ATP/NADPH demand ratio of 1.52 which is met if ≤ 21.7% of whole electron flux is cyclic. Sixth, electron transport has a photon use efficiency of ≥ 62%. Last, we discuss interactions between the OPPP and the cytosolic oxidation-reduction cycle in supplying leaf cytosolic NADPH.
Keyphrases
  • reactive oxygen species
  • hydrogen peroxide
  • nitric oxide
  • high intensity
  • living cells
  • tyrosine kinase
  • protein kinase
  • solar cells