Stereoselective Physiological Effects of Metconazole on Seed Germination and Seedling Growth of Wheat.
Yue DengRui LiuDi WuLi ChenWenjun ZhangZikang WangRujian HeJinling DiaoZhiqiang ZhouPublished in: Journal of agricultural and food chemistry (2020)
In addition to their fungicidal activity, many triazole fungicides function as plant regulators, which might impose adverse effects on the growth and development of crops. For chiral triazole fungicides, these effects can be alleviated by applying stereoisomers with high fungicidal and low regulator activities. This study investigated the stereoselectivity of four stereoisomers and the racemate of metconazole (2.5 g/100 kg seeds) on emergence and growth of seedlings (BBCH 01-14) in wheat. Wheat seedlings, coated with cis-1S,5R-metconazole, had a significantly lower seedling emergence ratio and shoot length than other metconazole treatments; however, the opposite effects were observed in the trans-1S,5S-metconazole treatment. With regard to the hormonal level, enzyme activity, and gene transcription of gibberellin (GA) and jasmonic acid (JA), cis-1S,5R-metconazole treatment inhibited GA biosynthesis while trans-1S,5S-metconazole treatment promoted GA biosynthesis. Moreover, cis-1S,5R-metconazole, trans-1S,5S-metconazole, trans-1R,5R-metconazole, and racemate treatments increased JA biosynthesis. The oxidative stress responses in trans-1R,5R-metconazole and racemate treatments were more intensive. Therefore, compared with the control, treatment with cis-1R,5S-metcoanzole exhibited minimal influence on wheat seedling growth. The results showed that the application of pure cis-1R,5S-metcoanzole (instead of the racemate) in agricultural management could decrease the risks associated with crop growth and developmental damage.
Keyphrases