Login / Signup

A Comparative Characterization of the Mitochondrial Genomes of Paramoeba aparasomata and Neoparamoeba pemaquidensis (Amoebozoa, Paramoebidae).

Natalya I BondarenkoEkaterina VolkovaAlexey MasharskyAlexander KudryavtsevAlexey Smirnov
Published in: The Journal of eukaryotic microbiology (2019)
Marine amebae of the genus Paramoeba (Amoebozoa, Dactylopodida) normally contain a eukaryotic endosymbiont known as Perkinsela-like organism (PLO). This is one of the characters to distinguish the genera Neoparamoeba and Paramoeba from other Dactylopodida. It is known that the PLO may be lost, but PLO-free strains of paramoebians were never available for molecular studies. Recently, we have described the first species of the genus Paramoeba which has no parasome-Paramoeba aparasomata. In this study, we present a mitochondrial genome of this species, compare it with that of Neoparamoeba pemaquidensis, and analyze the evolutionary dynamics of gene sequences and gene order rearrangements between these species. The mitochondrial genome of P. aparasomata is 46,254 bp long and contains a set of 31 protein-coding genes, 19 tRNAs, two rRNA genes, and 7 open reading frames. Our results suggest that these two mitochondrial genomes within the genus Paramoeba have rather similar organization and gene order, base composition, codon usage, the composition and structure of noncoding, and overlapping regions.
Keyphrases
  • genome wide
  • genome wide identification
  • oxidative stress
  • dna methylation
  • copy number
  • escherichia coli
  • transcription factor
  • minimally invasive
  • working memory
  • small molecule
  • single molecule
  • protein protein