2-Cyanopropan-2-yl versus 1-Cyanocyclohex-1-yl Leaving Group: Comparing Reactivities of Symmetrical Trithiocarbonates in RAFT Polymerization.
Oleksandr IvanchenkoMaksym OdnorohFaustine RolleAsja A KroegerSonia Mallet-LadeiraStéphane MazièresMarc GuerreMichelle L CooteMathias A DestaracPublished in: Macromolecular rapid communications (2024)
This study introduces bis(1-cyanocyclohex-1-yl)trithiocarbonate (TTC-bCCH) as a novel trithiocarbonate chain transfer agent and compares its reactivity with the previously described bis(2-cyanopropan-2-yl)trithiocarbonate (TTC-bCP) for the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St), n-butyl acrylate (nBA), and methyl methacrylate (MMA). Significant findings include the effective control of M n and low dispersities from the onset of polymerization of St and nBA showing swift addition-fragmentation kinetics, leading to similar behaviors between the two RAFT agents. In contrast, a fourfold decrease of the chain transfer constant to MMA is established for TTC-bCCH over TTC-bCP. This trend is confirmed through density functional theory (DFT) calculations. Finally, the study compares thermoplastic elastomer properties of all-(meth)acrylic ABA block copolymers produced with both RAFT agents. The impact of dispersity of PMMA blocks on thermomechanical properties evaluated via rheological analysis reveals a more pronounced temperature dependence of the storage modulus (G') for the triblock copolymer synthesized with TTC-bCCH, indicating potential alteration of the phase separation.