Development of a UPLC-MS/MS method for the simultaneous determination of atorvastatin, 2-hydroxy atorvastatin, and naringenin in rat plasma and its application to pharmacokinetic interaction studies.
Wenchao LiXiaolan XuSimeng WangYingchao LiYawei ZhangTianhong ZhangPublished in: Biomedical chromatography : BMC (2022)
Recent studies have revealed that the combination therapy of atorvastatin (ATV) with naringenin (NG) can offer meaningful benefits in the treatment of hypercholesterolemia, while decreasing adverse side effects. To investigate whether there are pharmacokinetic interactions among ATV, its metabolite 2-hydroxy atorvastatin (2-ATV), and NG, in the current study, we developed and validated a simple, rapid, and specific UPLC-MS/MS method to simultaneously determine the concentrations of these analytes in the rat plasma. Sample preparation was performed using simple protein precipitation. Chromatographic analysis was carried out on an Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 100 mm) using gradient elution mode, and these three analytes were detected using a Xevo® TQD triple quadrupole tandem mass spectrometer, in the positive ion electrospray ionization interface. The developed method showed good linearity over the following concentrations in rat plasma samples: 3-1200 ng/ml (r = 0.9965) for ATV, 1.5-600 ng/ml (r = 0.9934) for 2-ATV, and 3-1200 ng/ml (r = 0.9964) for NG. The assays were validated and satisfied the acceptance criteria recommended by U.S. Food and Drug Administration guidelines. Upon successful application of the method to a pharmacokinetic interaction study, the results indicated that NG significantly enhanced the bioavailability of ATV and 2-ATV.
Keyphrases
- simultaneous determination
- liquid chromatography tandem mass spectrometry
- high performance liquid chromatography
- combination therapy
- tandem mass spectrometry
- liquid chromatography
- ultra high performance liquid chromatography
- solid phase extraction
- ms ms
- mass spectrometry
- gas chromatography
- drug administration
- high throughput
- binding protein
- molecularly imprinted
- case control
- human health
- adverse drug
- protein protein