Login / Signup

Epidermal keratinocytes sense dsRNA via the NLRP3 inflammasome, mediating interleukin (IL)-1β and IL-18 release.

Xiuju DaiMikiko TohyamaMasamoto MurakamiKoji Sayama
Published in: Experimental dermatology (2017)
Skin epidermis, in addition to its barrier function, is able to actively sense harmful pathogens using pattern recognition receptors. In immune cells, the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome can mediate innate immunity against viral infection via a mechanism involving viral dsRNA recognition. Epidermal keratinocytes express NLRP3 inflammasome, which can sense contact sensitizers and mite allergens, leading to pro-interleukin (IL)-1β and pro-IL-18 cleavage into their active forms. Skin often faces viral infection. However, it is unknown whether viral dsRNA can be detected by the keratinocyte NLRP3 inflammasome. We transfected polyinosinic:polycytidylic acid (poly I:C), a synthetic viral dsRNA analogue, into cultured primary human keratinocytes at the aid of Lipofectamine 2000, and found that transfected poly I:C activated caspase-1 and induced caspase-1-dependent release of IL-1β and IL-18, which were suppressed on transfection with NLRP3 siRNA. The activation of keratinocyte NLRP3 inflammasome by transfected poly I:C was dependent on dsRNA-induced protein kinase (PKR) activation, and priming with type I interferons upregulated NLRP3 inflammasome activation through promoting PKR activation in poly I:C-transfected keratinocytes. In conclusion, the NLRP3 inflammasome can act as a sensor of dsRNA in epidermal keratinocytes, which may be important in both skin innate immune defense against viral infection and skin inflammation.
Keyphrases