Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity.
Yu-Hsuan ChengChing-Te KuoBo-Yao LianPublished in: Micromachines (2023)
In recent decades, vapor sensors have gained substantial attention for their crucial roles in environmental monitoring and pharmaceutical applications. Herein, we introduce a chameleon-inspired colorimetric (CIC) sensor, detailing its design, fabrication, and versatile applications. The sensor seamlessly combines a PEDOT:PSS vapor sensor with a colorimetric display, using thermochromic liquid crystal (TLC). We further explore the electrical characteristics of the CIC sensor when doped with ethylene glycol (EG) and polyvinyl alcohol (PVA). Comparative analyses of resistance change rates for different weight ratios of EG and PVA provide insights into fine-tuning the sensor's responsiveness to varying humidity levels. The CIC sensor's proficiency in measuring ambient humidity is investigated under a voltage input as small as 2.6 V, capturing resistance change rates and colorimetric shifts at relative humidity (RH) levels ranging from 20% to 90%. Notably, the sensor exhibits distinct resistance sensitivities of 9.7 mΩ (0.02% ∆R/R 0 )/%RH, 0.5 Ω (0.86% ∆R/R 0 )/%RH, and 5.7 Ω (9.68% ∆R/R 0 )/%RH at RH 20% to 30%, RH 30% to 80%, and RH 80% to 90%, respectively. Additionally, a linear temperature change is observed with a sensitivity of -0.04 °C/%RH. The sensor also demonstrates a colorimetric temperature sensitivity of -82,036 K/%RH at RH 20% to 30% and -514 K/%RH at RH 30% to 90%, per captured image. Furthermore, real-time measurements of ethanol vapor with varying concentrations showcase the sensor's applicability in gas sensing applications. Overall, we present a comprehensive exploration of the CIC sensor, emphasizing its design flexibility, electrical characteristics, and diverse sensing capabilities. The sensor's potential applications extend to real-time environmental monitoring, highlighting its promising role in various gas sensing fields.