Login / Signup

Synthesis of N-alkylated pyrazolo[3,4-d]pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties.

Busra O AydinDerya AnilMalihe Moradzadeh
Published in: Archiv der Pharmazie (2021)
Fused pyrimidines, especially pyrazolo[3,4-d]pyrimidines, are among the most preferred building blocks for pharmacology studies, as they exhibit a broad spectrum of biological activity. In this study, new derivatives of pyrazolo[3,4-d]pyrimidine were synthesized by alkylation of the N1 nitrogen atom. We synthesized 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine 2 from commercially available aminopyrazolopyrimidine 1 using N-iodosuccinimide as an iodinating agent. The synthesis of compound 2 started with nucleophilic substitution of 3-iodo-1H-pyrazolo[3,4-d]pyrimidin-4-amine with R-X (X: -OMs, -Br, -Cl), affording N-alkylated pyrazolo[3,4-d]pyrimidine. We performed this synthesis using a weak inorganic base and the mild temperature was also used for a two-step procedure to generate N-alkylated pyrazolo[3,4-d]pyrimidine derivatives. Also, all compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and the human carbonic anhydrase (hCA) isoforms I and II, with Ki values in the range of 15.41 ± 1.39-63.03 ± 10.68 nM for AChE, 17.68 ± 1.92-66.27 ± 5.43 nM for hCA I, and 8.41 ± 2.03-28.60 ± 7.32 nM for hCA II. Notably, compound 10 was the most selective and potent CA I inhibitor with a significant selectivity ratio of 26.90.
Keyphrases
  • photodynamic therapy
  • endothelial cells
  • squamous cell carcinoma
  • radiation therapy
  • molecular docking
  • lymph node
  • minimally invasive
  • induced pluripotent stem cells
  • structural basis