Expansion of the phenotype of Kosaki overgrowth syndrome.
Mari MinatogawaToshiki TakenouchiYu TsuyusakiFuminori IwasakiTomoko UeharaKenji KurosawaKenjiro KosakiCynthia J CurryPublished in: American journal of medical genetics. Part A (2017)
Skeletal overgrowth is a characteristic of several genetic disorders that are linked to specific molecular signaling cascades. Recently, we established a novel overgrowth syndrome (Kosaki overgrowth syndrome, OMIM #616592) arising from a de novo mutation in PDGFRB, that is, c.1751C>G p.(Pro584Arg). Subsequently, other investigators provided in vitro molecular evidence that this specific mutation in the juxtamembrane domain of PDGFRB causes an overgrowth phenotype and is the first gain-of-function point mutation of PDGFRB to be reported in humans. Here, we report the identification of a mutation in PDGFRB, c.1696T>C p.(Trp566Arg), in two unrelated patients with skeletal overgrowth, further confirming the existence of PDGFRB-related overgrowth syndrome arising from mutations in the juxtamembrane domain of PDGFRB. A review of all four of these patients with an overgrowth phenotype and PDGFRB mutations revealed postnatal skeletal overgrowth, premature aging, cognitive impairment, neurodegeneration, and a prominent connective tissue component to this complex phenotype. From a functional standpoint, hypermorphic mutations in PDGFRB lead to Kosaki overgrowth syndrome, infantile myofibromatosis (OMIM #228550), and Penttinen syndrome (OMIM #601812), whereas hypomorphic mutations lead to idiopathic basal ganglia calcification (OMIM #615007). In conclusion, a specific class of mutations in PDGFRB causes a clinically recognizable syndromic form of skeletal overgrowth.