Login / Signup

Metal Salts of 4-Chloro-3,5-dinitropyrazole for Promising Eco-Friendly Primary Colors Pyrotechnics.

Wen-Shuai DongHan ZhangQamar-Un-Nisa TariqZongYou LiChao ZhangXiao-Wei WuQi-Yao YuZhi-Min LiZun-Ning ZhouJian-Guo Zhang
Published in: Inorganic chemistry (2023)
The construction and design of pyrotechnics with superior performance is not only a task of great significance but also a tremendous challenge. In this regard, we present the syntheses of novel green primary colors pyrotechnics (red, green, and blue light-generating pyrotechnics) by employing 4-chloro-3,5-dinitropyrazole (CDNP) as a multifunctional raw material. CDNP contains a flame enhancer, oxygen-rich functional group, and nitrogen heterocyclic combustibles, which contribute to the high performance of the pyrotechnics. The characteristic elements (strontium, barium, and copper) that impart color to the flame are combined with the CDNP to synthesize the primary colors pyrotechnics by an "all-in-one" strategy. The structures of three energetic metal salts ( EMS-1 , EMS-2 , and EMS-3 ) are completely characterized, and their thermal stability, sensitivity, ignition performance, and color purity are systematically evaluated. All EMSs show excellent thermal stability and low mechanical sensitivities (>330 °C, >40 J, >360 N). Moreover, the EMSs demonstrate successful ignition and combustion under laser conditions and roasting test conditions, producing bright characteristic flames. Chromaticity analysis reveals that the three EMSs possess good color purities of 91, 80, and 70%, respectively. Consequently, the three integrated pyrotechnics exhibit exceptional combustion properties, highlighting their potential for use in various pyrotechnic applications.
Keyphrases
  • particulate matter
  • ionic liquid
  • drug delivery
  • high resolution
  • sewage sludge
  • risk assessment
  • binding protein