Login / Signup

Investigation of a Novel Injectable Chitosan Oligosaccharide-Bovine Hydroxyapatite Hybrid Dental Biocomposite for the Purposes of Conservative Pulp Therapy.

Mingkai CaiJithendra T RatnayakePeter CathroMaree GouldAzam Ali
Published in: Nanomaterials (Basel, Switzerland) (2022)
This study aimed to develop injectable chitosan oligosaccharide (COS) and bovine hydroxyapatite (BHA) hybrid biocomposites, and characterise their physiochemical properties for use as a dental pulp-capping material. The COS powder was prepared from chitosan through hydrolytic reactions and then dissolved in 0.2% acetic acid to create a solution. BHA was obtained from waste bovine bone and milled to form a powder. The BHA powder was incorporated with the COS solution at different proportions to create the COS-BHA hybrid biocomposite. Zirconium oxide (ZrO 2 ) powder was included in the blend as a radiopacifier. The composite was characterised to evaluate its physiochemical properties, radiopacity, setting time, solubility, and pH. Fourier-transform infrared spectroscopic analysis of the COS-BHA biocomposite shows the characteristic peaks of COS and hydroxyapatite. Compositional analysis via ICP-MS and SEM-EDX shows the predominant elements present to be the constituents of COS, BHA, and ZrO 2 . The hybrid biocomposite demonstrated an average setting time of 1 h and 10 min and a pH value of 10. The biocomposite demonstrated solubility when placed in a physiological solution. Radiographically, the set hybrid biocomposite appears to be more radiopaque than the commercial mineral trioxide aggregate (MTA). The developed COS-BHA hybrid biocomposite demonstrated good potential as a pulp-capping agent exhibiting high pH, with a greater radiopacity and reduced setting time compared to MTA. Solubility of the biocomposite may be addressed in future studies with the incorporation of a cross-linking agent. However, further in vitro and in vivo studies are necessary to evaluate its clinical feasibility.
Keyphrases
  • drug delivery
  • hyaluronic acid
  • tissue engineering
  • bone regeneration
  • stem cells
  • case control
  • oral health
  • soft tissue
  • cell therapy
  • sewage sludge
  • life cycle