Therapeutic warfarin use and the extrahepatic functions of vitamin K-dependent proteins.
Callum John DonaldsonDominic Jon HarringtonPublished in: British journal of biomedical science (2017)
The impact of warfarin therapy on the functions of extrahepatic vitamin K-dependent proteins (VKDP) is less clearly understood and less widely recognised in clinical practice than that on the hepatic counterparts (clotting factors II, VII, IX and X). Warfarin inhibits osteocalcin, an abundant extrahepatic VKDP involved in the mineralisation and maturation of bone and thus, primarily by this mechanism, may have an adverse effect on bone health. Whilst some studies do link warfarin use to an increase in osteoporosis and fracture risk others have not. Warfarin also inhibits the extrahepatic VKDP matrix gla protein (MGP) which acts to prevent ectopic calcification of the vasculature. Studies have consistently found a correlation between warfarin use and vascular calcification with inhibition of MGP believed to be the main cause. Inhibition of MGP also appears to explain warfarin's well established teratogenic effect. Further adverse effects may also arise from warfarin's inhibition of other known extrahepatic VKDPs. The available evidence is intriguing, and suggests that the impact of warfarin on the extrahepatic functions of vitamin K-dependent proteins warrants further careful consideration.