Login / Signup

Role of Molecular and Interchain Ordering in the Formation of a δ-Hole-Transporting Layer in Organic Solar Cells.

Naresh ChandrasekaranCheng LiShivam SinghAnil KumarChristopher R McNeillSven HuettnerDinesh Kabra
Published in: ACS applied materials & interfaces (2020)
Interface engineering, especially the realization of Ohmic contacts at the interface between organic semiconductors and metal contacts, is one of the essential preconditions to achieve high-efficiency organic electronic devices. Here, the interface structures of polymer/fullerene blends are correlated with the charge extraction/injection properties of working organic solar cells. The model system-poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM)-is fabricated using two different degrees of P3HT regioregularity to alter the blend interchain order and molecular packing, resulting in different device performances. Investigations by electroabsorption spectroscopy on these devices indicate a significant reduction (≈1 V) in the built-in potential with an increase in the P3HT regioregularity. This observation is also supported by a change in the work function (WF) of high regioregular polymer blends from photoelectron spectroscopy measurements. These results confirm the presence of a strong dipole layer acting as a δ-hole-transporting layer at the polymer/MoO3/Ag electrode interface. Unipolar hole-only devices show an increase in the magnitude of the hole current in high regioregular P3HT devices, suggesting an increase in the hole injection/extraction efficiency inside the device with a δ-hole-transporting layer. Microscopically, near-edge X-ray absorption fine structure spectroscopy was conducted to probe the surface microstructure in these blends, finding a highly edge-on orientation of P3HT chains in blends made with high regioregular P3HT. This edge-on orientation of P3HT chains at the interface results in a layer of oriented alkyl side chains capping the surface, which favors the formation of a dipole layer at the polymer/MoO3 interface. The increase in the charge extraction efficiency due to the formation of a δ-hole-transporting layer thus results in higher short circuit currents and fill factor values, eventually increasing the device efficiency in high regioregular P3HT devices despite a slight decrease in cell open circuit voltage. These findings emphasize the significance of WF control as a tool for improved device performance and pave the way toward interfacial optimization based on the modulation of fundamental polymer properties, such as polymer regioregularity.
Keyphrases