Login / Signup

Protein Thermodynamic Properties, Crystallisation, and the Hofmeister Series.

Emmanuel SaridakisKaterina Donta
Published in: ChemPlusChem (2024)
The Hofmeister series is a series of ions ordered according to their ability to precipitate proteins. It has also been linked to a host of (bio)chemical phenomena. Several attempts over the years to correlate the series to the varying success of different salts in crystallising proteins have been largely inconclusive. A correlation, based on published data and crystallisation conditions for several proteins, is proposed here between some thermodynamic properties of proteins and the position in the Hofmeister series of the salts from which they preferentially crystallise. Namely, a high ratio between the entropic or enthalpic protein-solvent interactions contribution to thermodynamic stability and the total thermodynamic stability of a given protein, indicate the protein's high propensity to crystallise in solutions of highly kosmotropic salts. Low such ratios on the other hand, indicate that chaotropic salts can be equally successful, i. e. that the protein in question is rather indifferent to the Hofmeister character of the salt. Testing various model proteins for crystallisation against screens containing salts found at different points on the Hofmeister series, as well as further bibliographic analysis, have yielded results that appear to largely corroborate this hypothesis. These conclusions may conceivably be used as a crystallisation predictive tool.
Keyphrases
  • ionic liquid
  • protein protein
  • amino acid
  • binding protein
  • aqueous solution
  • machine learning
  • high throughput
  • dna methylation
  • single cell